ADDITION OF N-CHLOROSULPHONYL ISOCYANATE TO DIPHENYLMETHYLENECYCLOPROPANE-CYCLIZATION VIA OXYGEN

E. Dunkelblum

Department of Organic Chemistry, Hebrew University, Jerusalem, Israel

(Received in UK 23 February 1972; accepted for publication 8 March 1972)

The addition of N-chlorosulphonyl isocyanate (CSI) to olefins is a very useful method for the preparation of β -lactams¹,². Monoolefins cyclize through nitrogen

and there is only one report of a cyclization through oxygen after rearrangement to yield an iminolactone³⁾. On the other hand dienes^{4,5,6)} and trienes^{7,8)} react with CSI to yield both lactones and lactams. We wish to report on the addition of CSI to a strained monoolefin, namely diphenylmethylenecyclopropane⁹⁾(1) which proceeds through the unusual oxygen closure to yield an iminolactone.

A solution of 15 mmoles of CSI in CH_2Cl_2 was added to a stirred solution of 10 mmoles of $\frac{1}{2}$ in the same solvent and left overnight at room temperature; the solvent was removed and the residue was triturated with dry ether to yield 85% of a single

product $\underline{2}$, m.p. 152-156° (pure by NMR). Recrystalization from methanol gave an analytical sample 10), m.p. 159-161° in low yield due to further reaction of $\underline{2}$ with methanol.

The mass spectrum, M⁺ 347, 349 m/e indicated that $\frac{2}{2}$ is a 1:1 adduct of CSI and $\frac{1}{2}$. The presence of a strong band at 1580 cm⁻¹ (>C=N-) in the IR(CICl₃) and the absence of any carbonyl band showed that $\frac{1}{2}$ is an iminolactone and not a lactam. The UV spectrum: $\lambda_{\text{max}}^{\text{EtOH}}$ (nm) 227 (ϵ 15200), 312 (ϵ 11600) and particularly the NMR spectrum:

(CDCl₃) δ (Hz) - 7.35/m, 10H (phenyl), 4.80/t (J=7) 2H (-OCH₂), 3.29/t (J=7)
2H (=C-CH₂-), confirmed that the product is α-diphenylmethylene-N-chlorosulphonyliminoγ-butyrolactone (2). Further proof for the structure 2 was acquired from hydrolysis
and esterification reactions. When 2 was treated with 2N NaOH in water/acetoneα-diphenylmethylene-γ-butorylactone (3), m.p. 169-170° (methanol or cyclohexane) was
obtained in 40% yield. This hydrolysis could also be achieved with methanolic HCl in
70% yield, but the product was contaminated with a methyl ester of 2. γ-Lactone 3

has the following spectral properties: v_{max}^{nujol} (cm⁻¹) 1750 (α , β -unsaturated γ -lactone); λ_{max}^{EtOH} (nm) 223 (ϵ 15000), 281 (ϵ 12000); NMR (CDCl₃) δ (Hz) - 7.30/m, 10H (phenyl), 4.30/t (J=7) 2H (-OCH₂-), 3.10/t (J=7) 2H (=C-CH₂-) and mass spectrum M⁺ 250 m/e. Refluxing 2 with methanol for 1 hour gave mainly the sulphonester 4 (contaminated with

 $\underline{3}$), m.p. 153-155° (methanol); $v_{\text{max}}^{\text{nujol}}$ (cm⁻¹) 1620 (C=N-); $\lambda_{\text{max}}^{\text{EtOH}}$ (nm) 227 (ϵ 15000), 301 (ϵ 11500); NMR: (CDCl₃) δ (Hz) - 7.35/m, 10H (phenyl), 4.59/t (J=7) 2H (-OCH₂-), 3.30/s, 3H (-SO₃CH₃), 3.20/t (J=7) 2H (=C-CH₂-).

The formation of $\underline{2}$ is rationalized by a stepwise mechanism. Attack of the double bond of $\underline{1}$ on the electrophilic carbon of CSI generates intermediate \underline{A} which ring-opens¹¹⁾ to intermediate \underline{B} . The last step is ring closure onto oxygen to yield $\underline{2}$. The double bond of $\underline{1}$ is sterically hindered, however strain in the cyclopropyl ring promotes the first two steps¹²⁾. Exclusive cyclization onto oxygen is surprising for a monoolefin CSI reaction. However, stepwise addition of CSI with charge separation⁷⁾ favors oxygen closure in dienes⁶⁾ and trienes^{7,3)} and this may be the explanation for the reaction of $\underline{1}$ with CSI which passes through the dipolar intermediates \underline{A} and \underline{B} .

REFERENCES

- (1) R. Graf, Angw. Chem. internat. Edit., 7, 172 (1968).
- (2) E.J. Moriconi, Mechanism of Reactions of Sulphur Compounds 3, 131 (1968).
- (3) T.W. Doyle and T.T. Conway, Tetrahedron Letters, 1889 (1969).
- (4) E.J. Moriconi and W.C. Meyer, ibid., 3823 (1968).
- (5) Th. Hang, F. Lohse, K. Metzger and H. Batzer, Helv. Chim. Acta, 51, 2069 (1968).
- (6) R.J.P. Barends, N.W. Speckamp and H.O. Huisman, Tetrahedron Letters, 5301 (1970).
- (7) E.J. Moriconi, C.F. Hummel and J.F. Kelly, ibid., 5325 (1969).
- (8) L.A. Paquette, S. Kirschner and J.R. Malpass, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 4330 (1971).
- (9) K. Sisido and K. Utimoto, Tetrahedron Letters, 3267 (1966).
- (10) All new compounds gave satisfactory elemental analysis.
- (11) R. Breslow in Molecular Rearrangements, Vol. 1, 223, Edit., P de Mayo.
- (12) Diphenylmethylenecyclobutane did not react with CSI at the same conditions.